Real-time alerting system for COVID-19 and other stress events using wearable data | Nature Medicine

L’application TousAntiCovid autorisée à faire des recommandations personnalisées
09/12/2021
Covid-19 : les données du vaccin Pfizer seront dévoilées en 2097 par la FDA
15/12/2021

Real-time alerting system for COVID-19 and other stress events using wearable data | Nature Medicine

Early detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 participants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals. Pre-symptomatic signals were observed at a median of 3 days before symptom onset. Examination of detailed survey responses provided by the participants revealed that other respiratory infections as well as events not associated with infection, such as stress, alcohol consumption and travel, could also trigger alerts, albeit at a much lower mean frequency (1.15 alert days per person compared to 3.42 alert days per person for coronavirus disease 2019 cases). Thus, analysis of smartwatch signals by an online detection algorithm provides advance warning of SARS-CoV-2 infection in a high percentage of cases. This study shows that a real-time alerting system can be used for early detection of infection and other stressors and employed on an open-source platform that is scalable to millions of users. In a prospective study, a smartwatch-based alerting system was able to detect pre-symptomatic and asymptomatic SARS-CoV-2 infection in a high percentage of cases.

Lire l’article complet sur : www.nature.com

Aller au contenu principal